Bonjour besoin pour un devoir de maths
1) Résoudre dans l'ensemble des nombres complexes, l'équation :z2-6z+13 = 0
le plan complexe est rapporté à un repère orthonormal direct ( O, u, v ) d'unité graphique 1 cm. on considere les points À, B, C d'affixes respectives a=3-2i, b= 3+2i , c=4i.
2) faire une figure et placer les points À, B, C.
3) Montrer que OABC est un parallélogramme

Responsive Ad Header

Question

Grade: Education Subject: mathematiques
Bonjour besoin pour un devoir de maths
1) Résoudre dans l'ensemble des nombres complexes, l'équation :z2-6z+13 = 0
le plan complexe est rapporté à un repère orthonormal direct ( O, u, v ) d'unité graphique 1 cm. on considere les points À, B, C d'affixes respectives a=3-2i, b= 3+2i , c=4i.
2) faire une figure et placer les points À, B, C.
3) Montrer que OABC est un parallélogramme
Asked by:
428 Viewed 428 Answers

Answer (428)

Best Answer
(855)
bonjour
1)
z²-6z+13 = 0

delta = b²-4ac
= 36 - 4*1*13
= -16

z1 = (6- i
16) / 2
=3-2i

z2 = (6+ i√16) / 2
z2=3+2i

2)
voir fichier joint

3)
a=3-2i, b= 3+2i , c=4i  ; O= 0 +0i

coordonnées de A( 3; -2)   
coordonnées de A( 3; 2)   
coordonnées de C( 0; 4)  
coordonnées de O ( 0; 0)  
 

vect OA  => (3;-2)
vect CB  =>  ( 3-0;2-4)    => (3 ;-2)
les vecteurs OA et CB sont égaux
donc OABC est un parallélogramme  (théorème)